
POLYBUTTON XFCN

©1990 Greg Anderson

The polybutton XFCN provides a mechanism that HyperCard scriptors can
use to add polygon-shaped buttons to their HyperCard stacks. These buttons
must be transparent, but they do autohilite when they are clicked on. It is
possible to have card-layer polybuttons and background-layer polybuttons.

USING THE POLYBUTTON XFCN

The polybutton XFCN is designed to gain control whenever a mouseDown
event is sent to a HyperCard card or a HyperCard background that contains
polybuttons. In order for this to happen, an 'on mouseDown' handler must
be added to the script of every card and every background that contains
polybuttons. The script should read as follows:

on mouseDown
if polybutton(buttonDefs) is "pass" then pass mouseDown

end mouseDown

Note: "buttonDefs" should be replaced with your polybutton definition
list. Methods for doing this are discussed in more detail below.

The polybutton XFCN will return the string "pass" if no polybutton was clicked
on; this signals your script to pass the mouseDown on to the next layer.
Alternately, if you wish to process mouseDown events that are send to the
HyperCard card or background, you could use a script that looks something
like this:

on mouseDown
if polybutton(buttonDefs) is "pass" then

-- Do custom stuff here
pass mouseDown

end if
end mouseDown

In both scripts, the variable "buttonDefs" is used to indicate that the
argument to the polybutton XFCN is a list of polygon definitions. The format
of these definitions is described in the next section, and it is

all in human-readable ASCII text. You may place the polybutton definition list
anywhere you wish. A hidden text field is one possible solution, but it is
recommended that you store the definition list in the script of the card or
background that the polybuttons are found in. If you do this, the invocation
of the polybutton XFCN will look like this:

if polybutton(the script of this card) ...

or
if polybutton(the script of this bg) ...

The polybutton XFCN automatically ignores anything that does not look like a
polybutton definition, so your scripts will not confuse it. Polybutton
definitions are preceded by "-- <", so they will look like comments to
HyperCard. (If you are not storing the definition list in a script, the first
minus is optional.)

It is desirable to store the button definition lists in the script of the card or
the background because this is where the polyedit XFCN will look for them
when it is invoked.

WRITING POLYBUTTON SCRIPTS

Every polybutton must have a name, and this name cannot contain spaces.
The name of the polybutton is used to generate a HyperTalk message that is
sent to the card or background when the polybutton is clicked on. Therefore,
if you had a polybutton named "dogCow", its handler would look like this:

on dogCow
-- This script is executed whenever the polybutton
-- "dogCow" is clicked
play "moof"

end dogCow

Also, polybuttons may be assigned parameters. These parameters are
passed to the polybutton handler when the polybutton is clicked on. This
feature is very useful if you have many polybuttons that all do very similar
things; you can assign the same name to every polybutton and give each
one a different parameter. For example, if you have a large number of
polybuttons that all bring the user to a different card when they are clicked
on, you could name all of the

polybuttons "funnyShape" and make their parameter the name of the card
that they go to. The script might look like this:

on funnyShape whatCard
lock screen
go to card whatCard
unlock screen with dissolve

end funnyShape

This is much simpler than typing in a different script for every polybutton.

POLYBUTTON DEFINITION LISTS

It is recommended that the polyedit XFCN be used to create and edit
polybutton definition lists. For those interested, the format of polybutton
definition lists is described below.

The format of a polybutton definition is:
-- <polybuttonName param1 param2 ...> polyButtonID enclosingRect
-- offsetVector lineVector1 lineVector2 lineVector3 ...

The polybutton XFCN does not care about line breaks and whitespace, but
the polyedit XFCN is less forgiving in this respect. Always make each
polybutton definition two lines long.

The usage of the polybutton name and parameters was described in the
section "Writing Polybutton Scripts". The polybutton ID is currently unused; it
is included to make polybuttons more like HyperCard buttons. (Someday it
may be possible to refer to a polybutton by ID.) It should be a unique
integer, analogous to a HyperCard button ID.

The polybutton's enclosing rectangle is the smallest rectangle that
completely surrounds the polybutton. If a mouseDown event occurs outside
of this rectangle, the polybutton XFCN does not bother to calculate whether
or not the click was inside the polygon. Therefore, if the enclosing rectangle
is too small, your polybutton will not behave correctly. If it is too large, some
time might be wasted, but no other ill effects will be noticed. The enclosing
rectangle is expressed as: "left,top,right,bottom", where each coordinate is
an integer.

The second line of a polybutton definition is a series of relative vectors that
define the shape of the polybutton. Each vector is expressed in the form "x-
offset,y-offset". Vectors are separated by whitespace. The first vector is the
offset from the upper left hand corner of the enclosing rectangle to the first
node of the polybutton. Each subsequent vector is a relative offset to the
next node from the location of the node before it. It is not necessary to close
the loop that defines the polybutton: the last line that connects the first and
last nodes is implicitly assumed to exist even if it is not defined.

An example polybutton definition follows:
-- <shapePolybutton pentagon> 2 122,186,210,270
-- 78,35 -32,38 -46,-19 5,-49 48,-12 25,42

Editing polybuttons is much easier if the polyedit XFCN is used. See the
documentation on this XFCN for more information.

Send comments and bug reports to:

Greg Anderson
greggor@apple.com

